
Abstract. We apply some fundamental concepts and results from mathematical logic in order to obtain an apparently new counterexample in symbolic dynamics. Two sets X and Y are said to be Medvedev equivalent if there exist partial recursive functionals from X into Y and vice versa. The Medvedev degree of X is the equivalence class of X under Medvedev equivalence. There is an extensive recursion-theoretic literature on the lattice of Medvedev degrees of nonempty Π^0_1 subsets of the Cantor space. This lattice is known as \mathcal{P}_s. We prove that \mathcal{P}_s consists precisely of the Medvedev degrees of 2-dimensional subshifts of finite type. We use this result to obtain an infinite collection of 2-dimensional subshifts of finite type which are, in a certain sense, mutually incompatible.