Proper regularizers in semi-supervised learning

Computational and Applied Mathematics Colloquium

Meeting Details

For more information about this meeting, contact Kristin Berrigan, John Harlim, Jinchao Xu.

Speaker: Dejan Slepcev, Carnegie Mellon University

Abstract: We consider a standard problem of semi-supersised learning: given a data set (considered as a point cloud in a euclidean space) with a small number of labeled points the task is to extrapolate the label values to the whole data set. In order to utilize the geometry of the dataset one creates a graph by connecting the nodes which are sufficiently close. Many standard approaches rely on minimizing graph-based functionals, which reward the agreement with the labels and the regularity of the estimator. Choosing a good regularization leads to questions about the relations between discrete functionals in random setting and continuum nonlocal and differential functionals. We will discuss how insights about this relation and results about the functionals provides ways to properly choose the functionals for semi-supervised learning and appropriately set the weights of the graph so that the information is propagated in a consistent way from the labeled points. This talk is based on joint works with Calder, Dunlop, Stuart and Thorpe.

Room Reservation Information

Room Number: 114 McAllister

Date: 02/03/2020

Time: 12:20pm - 1:30pm