Compactifying moduli of Riemann surfaces with a differential

Department of Mathematics Colloquium

Meeting Details

For more information about this meeting, contact Kristin Berrigan, Stephanie Zerby, Wen-Ching W. Li.

Speaker: Sam Grushevsky, Stony Brook

Abstract: We will discuss the problem of compactifying the moduli space of smooth complex curves, together with a meromorphic differential with prescribed multiplicities of zeroes and poles. This moduli space if the phase space of Teichmueller dynamics, and is also important for studying the enumerative geometry of the moduli space of curves. Based on joint work with M. Bainbridge, D. Chen, Q. Gendron, M. Moeller.


Room Reservation Information

Room Number: 114 McAllister

Date: 04/11/2019

Time: 3:30pm - 4:30pm