Random matrices, orthogonal polynomials, and the six-vertex model

Applied Analysis Seminar

Meeting Details

For more information about this meeting, contact Mark Levi, Alexei Novikov, Leonid Berlyand, Yakov Pesin.

Speaker: Pavel Bleher, IUPUI

Abstract: We will review various results on the large N asymptotic behavior of the partition function Z_N of the six-vertex model with domain wall boundary conditions (DWBC) and its relation to random matrices and orthogonal polynomials. The six-vertex model is a fundamental 2D model of statistical physics, and it is also known as a ferroelectric model, an ice model, an Aztec diamond dimer model with interaction, an ensemble of alternating sign matrices, a non-intersecting path process, etc. We will discuss an exact solution of the six-vertex with DWBC. This is a joint ongoing project with Vladimir Fokin, Karl Liechty, and Thomas Bothner.

Room Reservation Information

Room Number: 106 McAllister

Date: 03/18/2014

Time: 4:00pm - 5:00pm