Bounded reduction of invertible matrices over polynomial rings by addition operations

By Leonid Vaserstein

Introduction

Kazhdan [15] introduced a property T for topological groups and proved it for the discrete groups $SL_r \mathbb{Z}$ with $n \geq 3$. Here \mathbb{Z} stands for the ring of integers. He also proved that the group $SL_2 \mathbb{Z}$ did not enjoy the T-property. He believed that neither $SL_r \mathbb{Z}$ did.

The T-property was related with other group properties (cf., e.g., [28]). For example, here are two properties of $G = SL_r \mathbb{Z}, r \geq 3$, which $G = SL_2 \mathbb{Z}$ does not have:

- every matrix in G is a product of a bounded number of elementary matrices [8];
- every subgroup of a finite index in G contains a congruence subgroup and hence has no infinite commutative factor groups [25], [3].

Shalom [29] (cf. also [10]) proved that if every matrix in the group $SL_r(\mathbb{Z}[x_1, \ldots, x_n])$ can be reduced to a smaller size $\begin{pmatrix} \ast & 0 \\ 0 & 1 \end{pmatrix}$ by a bounded number of addition operations, then this discrete group has the T-property. He also observed that such a bounded reduction is possible when $r \geq n + 3$ by methods of Bass [1], using Bass’ estimate $sr(\mathbb{Z}[x_1, \ldots, x_n]) \leq n + 2$ for the stable rank.

Vaserstein [33] proved that $sr(\mathbb{Z}[x_1, \ldots, x_n]) = n + 1$ for $n \geq 2$ and that in the case $n = 1$, when $sr(\mathbb{Z}[x_1]) = 3$, the bounded reduction is still possible for $SL_3(\mathbb{Z}[x_1])$. So $SL_r(\mathbb{Z}[x_1, \ldots, x_n])$ has the T-property for $r \geq \max(3, n + 2)$.

In this paper, we show that the bounded reduction is possible when $r \geq 3$ for any n. Therefore the groups $SL_r(\mathbb{Z}[x_1, \ldots, x_n])$ have the T-property for all $r \geq 3$ and all n.

Note that that the congruence subgroup problem has negative solution for the groups $SL_r(\mathbb{Z}[x_1, \ldots, x_n])$ for all $n \geq 1$ and $r \geq 2$ (I wrote this to Kassabov in response to his question).

For any $r \geq 3$ and any n, it is known [30] (cf. also [14]) that every matrix in $SL_r(\mathbb{Z}[x_1, \ldots, x_n])$ is a product of elementary matrices but it is unknown (even for $n = 1$ and any $r \geq 3$) whether the number of elementary matrices can be bounded.
Replacing the coefficient ring \mathbb{Z} by an arbitrary commutative Noetherian ring C of finite Krull dimension $\dim(C)$ (note that $\dim(\mathbb{Z}) = 1$) we obtain a more general result:

Theorem 1. Let C be a commutative Noetherian ring and $\dim(C) < \infty$. Then for any $r \geq \max(3, \dim(C) + 2)$, every matrix in $SL_r(C[x_1, \ldots, x_n])$ can be reduced to the subgroup $\begin{pmatrix} SL_{r-1}(C[x_1, \ldots, x_n]) & 0 \\ 0 & 1 \end{pmatrix}$ by

$$n(21n - 79)/2 + 33nr + 4r - 4$$

row addition operations.

By induction on r, we obtain

Corollary 2. Let C be a commutative Noetherian ring and $\dim(C) < \infty$. Then for any $r \geq \max(3, \dim(C) + 2)$, every matrix in $SL_r(C[x_1, \ldots, x_n])$ can be reduced to the subgroup $\begin{pmatrix} SL_sC[x_1, \ldots, x_n] & 0 \\ 0 & 1_{r-s} \end{pmatrix}$, where $s = \max(2, \dim(C) + 1)$, by

$$n(21n - 79)(r-s)/2 + (33n+4)(r-s)(r+s+1)/2 - 4(r-s) < 11n^2 + 17(n+1)r^2$$

row addition operations.

For example, when $C = F$ is a field, then $\dim(C) = 0$ and each matrix in the group $SL_r(F[x_1, \ldots, x_n])$ with $r \geq 3$ can be reduced to the subgroup $\begin{pmatrix} SL_2(F[x_1, \ldots, x_n]) & 0 \\ 0 & 1_{r-2} \end{pmatrix}$ by $11n^2 + 17(n+1)r^2$ addition operations. When $n = 0$, the further reduction is possible. In fact, every matrix in SL_rF is a product of r^2 elementary matrices, and for any r there is a matrix in SL_rF which is not a product of $r^2 - 2$ elementary matrices.

By an elementary matrix over a ring A we mean a matrix a^i_{ij} where $a \in A$ and $i \neq j$. It differs from the identity matrix 1_r at most one off-diagonal position. Multiplication by an elementary matrix on the left is a row addition operation. In some publications (but not in the present paper), any matrix in E_rA, i.e., any product of elementary matrices is called an elementary matrix.

When $n \geq 1$ and $r = 2$, by Cohn [7], the elementary length in the group $E_2(F[x_1, \ldots, x_n])$ is unbounded, i.e., there are arbitrary long product of elementary matrices which cannot be shorten; furthermore, $SL_2(F[x_1, \ldots, x_n]) \neq E_2(F[x_1, \ldots, x_n])$ when $n \geq 2$.

Also when $F = C$, the complex numbers, or $F = R$, the real numbers, the elementary length in $SL_r(F[x_1]) = E_r(F[x_1])$ is unbounded for every $r \geq 2$ [31] On the other hand, when F is finite or algebraic over a finite field, every
matrix in $SL_r(F[x_1])$ is a product of a bounded number of elementary matrices provided that $r \geq 3$ [16].

When $F = \mathbb{Q}$, the rational numbers, then for any $n \geq 1$ and any $r \geq 3$, it is unknown whether every matrix in $SL_r(F[x_1, \ldots, x_n])$ is a bounded product of elementary matrices.

Under the conditions of Theorem 1 and the additional condition that C is regular, reduction from $SL_r(C[x_1, \ldots, x_n])$ to SL_rC by addition operations is possible [30] but [30] does not give any upper bound for the number of operations, and, as mentioned above, no upper bound dependent only on n, r exists in the cases $C = \mathbb{C}$ and $C = \mathbb{R}$.

Decomposition in polynomial matrices into products of elementary matrices is important in digital signal processing, and there are many publications (cf, e.g., [5], [4], [6], [9], [11], [12], [13], [17], [22], [18], [20], [19], [21], [23], [24], [27], [26], [34]) about algorithmic ways to do this. Most of them, give no bounds on the number of elementary matrices (or their degrees). A notable exception is [9], which gives, on page 34, representation of any matrix $\alpha \in SL_r(F[x_1, \ldots, x_n])$ as a product of $O(n^2r^2(\deg(\alpha)+1)^2)$ matrices each of them being elementary or belonging to the subgroup $\left(SL_2(F[x_1, \ldots, x_n]) \right.$ 0 0 1_{r-2} $\left. 1_{r-2} \right)$, provided that F is an infinite field. The constant in O is not given, and the bound is obviously wrong when $n = 0$. Our Corollary 1 removes the dependence on the matrix, gives an explicit constant, and works also for finite fields.

In Section 1, we reduce Theorem 1 to Theorem 1.2 which we prove in Section 2.

Now we point out two consequences of Corollary 2.

Corollary 3. Let A be a commutative ring generated by n elements and $r \geq 3$. Then every matrix in E_nA can be reduced to a matrix in $\left(SL_2A \ 0 \ 0 \ 1_{r-2} \right)$ by $11n^2r + 17(n+1)r^2$ row addition operations.

Proof. We have a ring morphism $\mathbb{Z}[x_1, \ldots, x_n] \to A$ taking 1 to 1. Every matrix $\alpha \in E_rA$ is the image of a matrix $\beta \in SL_n(\mathbb{Z}[x_1, \ldots, x_n])$. Reducing the matrix β to the subgroup $\left(SL_2(\mathbb{Z}[x_1, \ldots, x_n]) \ 0 \ 0 \ 1_{r-2} \right)$ by Corollary 1 with $C = \mathbb{Z}$, we reduce its image α to $\left(SL_2A \ 0 \ 0 \ 1_{r-2} \right)$.

Corollary 4. Let A be a commutative algebra over a field F generated by n elements and $r \geq 3$. Then every matrix in E_nA can be reduced to a matrix in $\left(SL_2A \ 0 \ 0 \ 1_{r-2} \right)$ by $11n^2r + 17(n+1)r^2$ row addition operations.
Proof. We have a ring morphism \(F[x_1, \ldots, x_n] \to A \) taking 1 to 1. Every matrix in \(\alpha \in E_r A \) is the image of a matrix in \(\beta \in SL_r(F[x_1, \ldots, x_n]) \). Reducing the matrix \(\beta \) to the subgroup \(SL_2(F[x_1, \ldots, x_n]) \) by Corollary 1 with \(C = F \), we reduce its image \(\alpha \) to \(SL_2 A \) by \(r-2 \) row addition operations.

Acknowledgments. I discussed polynomial matrices with several mathematicians. Particularly encouraging were conversations with A. Suslin, E. Knill, I. Daubechies, and Y. de Cornulier.

1. Reduction of Theorem 1 to Theorem 1.2

Following [33], we denote by \(Um_r A \) the set of unimodular columns over a ring \(A \) with 1. Obviously, \((GL_r A)e_r \subset Um_r A \), where \(e_r \) is the last column of the identity matrix \(1_r \).

Since every matrix \(\alpha = \begin{pmatrix} \beta & 0 \\ * & 1 \end{pmatrix} \in GL_r A \) can be reduced to \(\begin{pmatrix} \beta & 0 \\ 0 & 1 \end{pmatrix} \) by \(r-1 \) row (or column) addition operations, Theorem 1 follows trivially from the following result.

Theorem 1.1. Under the conditions of Theorem 1, let \(D = \dim(C) \), \(A = C[x_1, \ldots, x_n] \). Then every column \(b \in Um_r A \) can be reduced to the last column \(e_r \) of the identity matrix \(1_r \) by

\[
21n(n+1)/2 + (22D + 10r - 6)n + D + 2r - 1 \leq n(21n - 79)/2 + 33nr + 3r - 3 \leq n(21n - 79)/2 + 33nr + 3r - 3
\]

row addition operations.

The rest of this section is about reducing Theorem 1.1 to the following result involving univariate polynomials.

Theorem 1.2. Let \(B \) be a commutative ring with 1 such that the space \(\text{Specm}(B) \) of maximal ideals is Noetherian and \(\text{Bdim}(B) = \delta < \infty \). Let \(r \geq 3 \), \(A = B[y], b = (b_i) \in Um_r A \), and \(b_1 \) be monic. Then, by

\[
21\delta + 9r + 15
\]

addition operations, the polynomial column \(b = b(y) \) can be reduced to the constant column \(b(0) \).

Here we use the Bass dimension \(\text{Bdim}(B) \) which is defined as the least \(\delta \) such that the space \(\text{Specm}(B) \) of all maximal ideals of \(B \) is a finite union of subspaces of Krull dimension \(\leq \delta \) each.
Clearly, $\text{Bdim}(B) \leq \dim(B)$ for any Noetherian ring B. Bass [1], [2] proved that

\[\text{sr}(B) \leq \text{Bdim}(B) + 1 \text{ when } B \neq 0. \]

(For the zero ring, $\dim(0) = \text{Bdim}(0) = -\infty$.)

We will prove Theorem 1.2 in the next section, using a “semi-localization and patching” method. In the end of this section, we will use Theorem 1.2 to obtain Theorem 1.1 by induction on the number of variables n. In other words, we eliminate one variable after another. To eliminate a variable (using Theorem 1.2), we have to create a monic polynomial. We do this, following Suslin [33], by $\dim(C) + 1 + r$ addition operations and an invertible change of variables, using the condition $r \geq \dim(C) + 2$.

Now we describe how to create a monic polynomial.

Lemma 1.3. Let C be a Noetherian ring with $\dim(C) = D < \infty, n \geq 1, A = C[x_1, \ldots, x_n].$ Let $r \geq D + 2.$ Let $b = (b_i) \in \text{Um}_r A.$ Then there are $c_i \in A$ and an invertible change of variables $x_1, \ldots, x_n \leftrightarrow y_1, \ldots, y_n$ such that $c_i = 0$ for $i \geq D + 2$ and the ideal

\[A(b_1 + c_1 b_r) + \cdots + A(b_{r-1} + c_{r-1} b_r) \]

contains a monic polynomial in y_r with coefficients in $C[y_1, \ldots, y_{r-1}]$.

Proof. By Corollary 9.3 of [33], multiplying the column b by elementary matrices $a^{i,j}$ with $i \leq j - 1, D + 1,$ we can arrange that the first $D + 1$ entries form a prime (regular) sequence. In other words, there is an upper triangular matrix $\alpha \in GL_r A$ with ones along the main diagonal which may differ from 1_r only in the first $D + 1$ rows such that the entries d_1, \ldots, d_{D+1} of the column $(d_i) = \alpha b$ form a prime sequence.

By Lemma 9.1 of [33], the height of the ideal $J = Ad_1 + \cdots + Ad_{D+1}$ admits the lower bound $\text{ht}(J) \geq D + 1.$ Lemma 10.5 of [33] asserts that there is an invertible change of variables $x_1, \ldots, x_n \leftrightarrow y_1, \ldots, y_n$ such that the ideal J contains a monic polynomial in y_r with coefficients in $C[y_1, \ldots, y_{r-1}]$.

Let $(c_1, \ldots, c_{r-1}, 1)^T$ be the last column of the matrix $\alpha.$ Then $c_i = 0$ for $i \geq D + 2$ and $J = A(b_1 + c_1 b_r) + \cdots + A(b_{r-1} + c_{r-1} b_r)$.

Corollary 1.4. Under the conditions of Lemma 1.3, by $D + r$ addition operations, we can make the first entry of the column b to be monic in $y = y_r$ with coefficients in $B = C[x_1, \ldots, y_{n-1}]$.

Proof. Applying Lemma 1.3 (to the column obtained from b by switching the first and last components), after $D + 1$ addition operations, we obtain a column (d_i) such that the ideal $J = Ad_2 + \cdots + Ad_r$ contains a monic polynomial. Then by adding to $b_1 = d_1$ an element of J which can be accomplished
by \(r - 1 \) addition operations, we make the first entry monic. The total number of addition operations is \(D + 1 + r - 1 = D + r \).

Now we can prove Theorem 1.1.

First by Corollary 1.3 we make the first entry monic using \(D + r \) addition operations. Then we can eliminate the variable \(y = y_r \) by Theorem 1.2 using

\[
21\delta + 9r + 15 \leq 21(n + D - 1) + 9r + 15
\]

addition operations. We used that \(\delta = \text{Bdim}(B) \leq \dim(B) = D + n - 1 \). So the total number of addition operation to eliminate one variable is at most \(21n + 22D + 10r - 6 \).

After \(n \) steps, using at most \(21n(n + 1)/2 + (22D + 10r - 6)n \) addition operations, we can eliminate all \(n \) variables, i.e., obtain a column in \(\text{Um}_r C \).

Since \(sr(C) \leq \text{Bdim}(C) + 1 \leq D + 1 \leq r - 1 \), we can reduce this column over \(C \) to \(e_r \) by at most \(D + 1 + 2(r - 1) \) addition operations. So it takes at most

\[
21n(n + 1)/2 + (22D + 10r - 6)n + D + 2r - 1 \leq n(21n - 79)/2 + 33nr + 3r - 3
\]

addition operations to reduce \(b \) to \(e_r \) (we used that \(D \leq r - 2 \)).

2. Proof of Theorem 1.2

Definition 2.1. Let \(A \) be an associative ring with 1, \(s \) a central element of \(A \), \(r \geq 2 \), \(v \in A^{r-1} \) (a column over \(A \)), \(u \in A^{r-1}^T \) (a row over \(A \)). We define an \(r \) by \(r \) matrix over \(A \) by

\[
\mu(u, s, v) = \begin{pmatrix}
1_{r-1} + vsu & vs^2 \\
-uvu & 1 - uvs
\end{pmatrix}.
\]

If \(s \in GL_1 A \), then

\[
\mu(u, s, v) = \begin{pmatrix}
1_{r-1} & 0 \\
-u/s & 1
\end{pmatrix} \begin{pmatrix}
1_{r-1} & vs^2 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1_{r-1} & 0 \\
u/s & 1
\end{pmatrix}
\]

is a product of \(3(r - 1) \) elementary matrices.

A direct computation shows that

\[
\mu(u, s, v)\mu(u, s, v') = \mu(u, s, v + v')
\]

and \(\mu(u, s, 0) = 1_r \), hence \(\mu(u, s, v) \in GL_r A \).

Lemma 2.2. When \(r \geq 3 \), the matrix \(\mu(u, s, v) \) is a product of \(7r - 3 \) elementary matrices in \(GL_r A \).
Proof. We write \(v = \begin{pmatrix} v_1 \\ v' \end{pmatrix} \) and \(u = (u_1, u') \). Then

\[
\mu(u, s, v) = \mu(u, s, e_1 v_1) \mu(u, s, \begin{pmatrix} 0 \\ v' \end{pmatrix}).
\]

The second factor in detail is

\[
\begin{pmatrix}
1 & 0 & 0 \\
v' su_1 & 1_{r-2} + v' su' & v's^2 \\
-u'v'u_1 & -u'v'u' & 1 - u'v's
\end{pmatrix}.
\]

By \(r - 1 \) row (or column) addition operations we can change the first column and obtain

\[
\begin{pmatrix}
1 & 0 & 0 \\
v's & 1_{r-2} + v' su' & v's^2 \\
-u'v' & -u'v'u' & 1 - u'v's
\end{pmatrix}.
\]

Adding the first column multiplied by \(-s\) to the last column we obtain the matrix

\[
\begin{pmatrix}
1 & 0 & -s \\
v's & 1_{r-2} + v' su' & 0 \\
-u'v' & -u'v'u' & 1
\end{pmatrix}.
\]

Adding the last row multiplied by \(s \) to the first row we obtain the matrix

\[
\begin{pmatrix}
1 - u'su' & -u'v'u's & 0 \\
v's & 1_{r-2} + v' su' & 0 \\
-u'v' & -u'v'u' & 1
\end{pmatrix}.
\]

Now we can kill the first two entries in the last row by \(r - 1 \) row addition operations and obtain \(\begin{pmatrix} \mu(u', 1, v's) & 0 \\ 0 & 1 \end{pmatrix} \) which is a product of \(3(r - 2) \) elementary matrices. So the second factor is a product of \(5r - 6 \) elementary matrices.

The first factor looks similar:

\[
\mu(u, s, e_1 v_1) = \begin{pmatrix}
1 + v_1 su_1 & v_1 su' & v_1 s^2 \\
0 & 1_{r-2} & 0 \\
-u_1 v_1 u_1 & u_1 v_1 u' & 1 - u_1 v_1 s
\end{pmatrix}.
\]

After conjugation by a permutation matrix, it takes the form

\[
\begin{pmatrix}
1_{r-2} & 0 & 0 \\
v_1 su' & 1 + v_1 su_1 & v_1 s^2 \\
u_1 v_1 u' & -u_1 v_1 u_1 & 1 - u_1 v_1 s
\end{pmatrix}.
\]

After \(2(r - 3) \) row addition operations, it takes the form

\[
\begin{pmatrix}
1_{r-3} & 0 & 0 \\
0 & 1 & 0 \\
0 & * & 1 + v_1 su_1 & v_1 s^2 \\
0 & * & -u_1 v_1 u_1 & 1 - u_1 v_1 s
\end{pmatrix}.
\]
Now we treat the southeast 3 by 3 block in the same way as we treated the second factor above and write it as the product of $5 \cdot 3 - 6 = 9$ elementary matrices. So $\mu(u, s, e_1v_1)$ is a product of $2(r - 3) + 9 = 2r + 3$ elementary matrices.

Thus, $\mu(u, s, v)$ is a product of $7r - 3$ elementary matrices.

Corollary 2.3. Let A be an associative ring with 1, s a central element of A, $r \geq 2$, $b', v \in A^{r-1}$, $u \in A^{r-1}$, $b_r \in A$. Assume that $ub' = (1 - b_r)s$. Then we can transform the column \(\begin{pmatrix} b' \\ b_r \end{pmatrix} \) to \(\begin{pmatrix} b' + vs^2 \\ b_r - usv \end{pmatrix} \) by $7r - 3$ addition operations.

Proof. We have $\mu(u, s, v) \begin{pmatrix} b' \\ b_r \end{pmatrix} = \begin{pmatrix} b' + vs^2 \\ b_r - usv \end{pmatrix}$.

Corollary 2.4. Let B be a commutative ring with 1, $A = B[y], r \geq 3, b = b(y) = (b_i) \in A^r, s \in B \cap (A_1 + \cdots + A_{r-1}).$ Then the column $b(y + s^2z)$ can be reduced to $b(x)$ by $8r - 4$ addition operations over $A[z]$.

Proof. We write $b = b(y) = (b_i)$ as $b = \begin{pmatrix} b' \\ b_r \end{pmatrix}$. By Corollary 2.3, the column

\[
\begin{pmatrix}
\begin{pmatrix} b'(y + s^2z) \\
\begin{pmatrix} b_r(y + s^2z)
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\]

can be reduced to \(\begin{pmatrix} b'(y) \\ b_r(y + sw) \end{pmatrix} \) by $7r - 3$ addition operations, for some $w \in A[z]$. We used that $s \in B \cap (A[z]b_1(t) + \cdots + A[z]b_{r-1}(t))$ for $t = y + s^2z$ and that $b'(y + s^2z) \equiv b'(y) \pmod{s^2A[z]}$.

Now $\begin{pmatrix} b'(y) \\ b_r(y + sw) \end{pmatrix}$ can be reduced to $b(y) = \begin{pmatrix} b'(y) \\ b_r(y) \end{pmatrix}$ by $r - 1$ addition operations. \qed

Lemma 2.5. Let B be a commutative ring with 1, $A = B[y], r \geq 3, b = (b_i) \in Um_rA$, and J an ideal of B. Assume that b_1 is monic and that $\text{Specm}(B/J)$ is Noetherian. Then there are $c_i \in A$ such that

\[
\text{Bdim}(B/(J + B \cap (Ab_1 + A(b_2 + \sum_{i=3}^{r} c_i b_i)))) \leq \text{Bdim}(B/J) - 1.
\]

Proof. We identify $P \in \text{Specm}(B/J)$ with $P \in \text{Specm}(B)$ containing J. For each P we can find $c_i \in A$ such that b_1 and $b_2 + \sum_{i=3}^{r} c_i b_i$ do not have a common zero at P (modulo P, we work with polynomials over a field), i.e., the resultant $\text{res}(b_1, b_2 + \sum_{i=3}^{r} c_i b_i) \in B$ does not belong to P.

We use that b_1 is monic, which makes the resultant independent on the degree of the second polynomial. In general, the definition of the resultant
involves the degrees of polynomials which can degrees after reduction modulo an ideal.

By the Chinese Remainder Theorem, we can find \(c_i \in A \) as above which work for every \(P \) (chosen on the irreducible components). Then passing from \(B/J \) to

\[
B/(J + B \cap (Ab_1 + A(b_2 + \sum_{i=3}^r c_i b_i)))
\]

replaces every component by a proper subset which reduces the dimension \(\text{Bdim} \) by at least 1. (When \(B/J = 0 \), i.e., \(\text{Bdim}(B/J) = -\infty \), the dimension stays \(-\infty \); when \(\text{Bdim}(B/J) = \infty \), it may stay \(\infty \).)

Corollary 2.6. Under the conditions of Lemma 2.8, for every \(j \) such that \(1 \leq j \leq r - 2 \) there are \(d_i \in B \) such that \(d_1 = d_i = 0 \) for \(i > j \) and \(\text{Bdim}(B/(B \cap \sum_{i=2}^{r-1} A(b_i + d_i b_r))) \leq \text{Bdim}(B/J) - j \).

Proof. When \(j = 1 \) this is Lemma 2.8 (observe that the addition operations not involving \(b_1 \) and \(b_r \) do not change the ideal \(\sum_{i=2}^{r-1} Ab_i \)).

When \(j > 1 \) (hence \(r > 4 \)), we change \(b_3 \) by addition operations to get further reduction of the dimension, etc.

Corollary 2.7. Let \(B \) be a commutative ring with 1 and \(A = B[y] \). Assume that \(\text{Specm}(B) \) is Noetherian and \(\delta = \text{Bdim}(B) < \infty \). We write \(\delta + 1 = \delta_0 + (r - 2)\delta_1 \) with \(\delta_1 = \lfloor \delta/(r - 2) \rfloor \). Let \(r \geq 3, b = (b_i) \in Um_r A, b_1 \) is monic. Then there are \(c_{i,j} \in A \), where \(2 \leq i \leq r - 1, 0 \leq j \leq \delta_1 \) such that \(c_{i,\delta_1} = 0 \) for \(i \geq \delta_0 + 1 \) and

\[
\sum_{j=0}^{\delta_1} (B \cap \sum_{i=2}^{r-1} A(b_i + c_{i,j} b_r)) = B.
\]

Proof. This follows from Corollary 2.9 by induction on \(\delta_1 \). Note that \(\text{Bdim}(B/J) < 0 \) if and only if \(J = B \).

Proposition 2.8. Under the conditions of Corollary 2.10, the polynomial column \(b = b(y) \) can be reduced to the constant column \(b(0) \) by

\[(9r - 6)(\delta_1 + 1) + \delta_0 \]

addition operations.

Proof. Let \(c_{i,j} \) be as in Corollary 2.7. We find \(s_j \in B \cap \sum_{i=2}^{r-1} A(b_i + c_{i,j} b_r) \) such that \(\sum_{j=0}^{\delta_1} s_j = 1 \).

For \(j = 0, \ldots, \delta_1 \), we set \(b^{(j)} = (b_i + c_{i,j} b_r) \in Um_r A \), where \(c_{1,j} = c_{r,r} = 0 \). By Corollary 2.4, the polynomial column \(b^{(j)}(y) \) can be reduced to \(b^{(j)}(y + s_j^2 z_j) \)
by $8r - 4$ addition operations over $A[z_j]$. We write this fact as follows:

$$b^{(j)}(y) \leadsto b^{(j)}(y + s_j^2 z_j).$$

Now we combine this with the fact that $b(y)$ can be reduced to $b^{(j)}(y)$ by $r - 2$ addition operations:

$$b(y) \leadsto b^{(j)}(y) \leadsto b^{(j)}(y + s_j^2 z_j),$$

(when $j = \delta_1$, the number $r - 2$ can be replaced by $\delta_0 \leq r - 3$).

Combining the addition operations, we obtain:

$$b(y) \leadsto b^{(0)}(y) \leadsto b^{(0)}(y + s_0^2 z_0) \leadsto b^{(1)}(y + s_0^2 z_0 + s_1^2 z_1) \leadsto \ldots \leadsto b^{(\delta_1)}(y + s_0^2 z_0 + \cdots + s_{\delta_1}^2 z_{\delta_1}) \leadsto b(y + s_0^2 z_0 + \cdots + s_{\delta_1}^2 z_{\delta_1}).$$

Thus, $b(y)$ can be reduced to $b(y + s_0^2 z_0 + \cdots + s_{\delta_1}^2 z_{\delta_1})$ by $(9r - 6)(\delta_1 + 1) + \delta_0$ addition operations over the polynomial ring $A[z_0, \ldots, z_{\delta_1}]$.

Since $\sum s_j = 1$, $\sum B s_j^2 = B$. Specializing the indeterminates z_j to elements in yB, we make $y + s_0^2 z_0 + \cdots + s_{\delta_1}^2 z_{\delta_1}$ zero. □

Now we can finish our proof of Theorem 1.2. Using that $\delta_0 \geq 0, \delta = (r - 2)\delta_1 + \delta_0$, and $r \geq 3$ (hence $13r\delta_1 \geq 36\delta_1$), we get that

$$9(r - 6)(\delta_1 + 1) + \delta_0 \leq 21\delta + 9r + 15.$$

So Theorem 1.2 follows from Proposition 2.8.

Remark. If $\delta_1 = 0$ in Proposition 2.8, i.e., $\delta \leq r - 3$ in Theorem 1.2, then the bound $9r - 6 + \delta$ in Proposition 2.8 (resp., $9r + 15$ in Theorem 1.2) can be easily improved to the bound $2\delta + r + 1$ (resp., $3r - 5$).

3. Concluding remarks

By Vaserstein [33] §5, for any commutative ring A and any $r \geq 1$, if every $b \in Um_{2r}A$ can be reduced to e_{2r} by a bounded number of addition operations, then this can be done by a bounded number of elementary symplectic operations. Therefore, it is trivial to extend our results to the symplectic groups $Sp_{2r}A$ with some bounds, but getting good bounds requires some work.
Also similar results can be obtained by similar methods for orthogonal and other simple isotropic algebraic groups.

In conclusion, it is interesting to compare results of the present paper with those of [32]. Let X be a topological space, $A = \mathbb{R}^X$ (resp., $A = \mathbb{C}^X$) the ring of continuous real (resp., complex) functions on X. Assume that X is finitely-dimensional (i.e., $\text{sr}(A) < \infty$). It is shown in [32] that every matrix in $E_r A$ can be reduced to the subgroup $\begin{pmatrix} \text{SL}_2 A & 0 \\ 0 & 1_{r-2} \end{pmatrix}$ by a bounded number of addition operations and that (in the case $A = \mathbb{R}^X$ and $r = 2$) the further bounded reduction to 1_r is not always possible.

This is similar to Corollary 1 above. However, when $A = \mathbb{C}^X$ or $r \geq 3$, every matrix in $E_r A$ is a product of a bounded number (depending only on r and $\text{sr}(A)$) of elementary matrices which contrasts with the situation for $A = \mathbb{R}[x]$ or $\mathbb{C}[x]$. A philosophical explanation is that while the fundamental group of $\text{SL}_n \mathbb{R}$ is finite for $r \geq 3$ (which was used in [32]), an algebraic version of the fundamental group is $K_2 \mathbb{R}$ which is infinitely generated (which was used in [31]).

References

